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Elementary Inequalities
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Markov Inequality

Theorem (Markov Inequality)

Let X be a random variable that takes non-negative values. Then
Pr [X > t] 6 E[X ]/t.

Suppose not, then Pr [X > t] > E[X ]/t

E[X ] > 0 · Pr[0 6 X < t] + t · Pr[X > t] > E[X ]

Hence contradiction

Think: Tightness

Lecture 04: Balls and Bins: Birthday Paradox & Maximum Load



Chebyshev’s Inequality

Theorem (Chebyshev’s Inequality)

Pr [|X − E[X ]| > t] 6
Var(X )

t2

Use Markov on Pr[(X − E[x ])2 > t2]

Think: Tightness
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Birthday Paradox

pm,n is the probability of encountering a collision when m balls are
thrown in n bins
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Use m ∼
√

2n ln(1/p), to achieve pm,n > (1− p)

Think: Tightness
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Maximum Load

Theorem (Maximum Load Bound)

When n balls are thrown into n bins, the maximum load is
Θ
(

log n
log log n

)
with high probability.
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Upper Bound

Let Xi be the indicator variable for bin i getting > k balls

Pr[Xi = 1] 6
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There exists a suitable constant c such that for
k = k∗ := c log n/ log log n, we have Pr[Xi = 1] 6 1/n2

Let X :=
∑n

i=1 Xi

Pr[X > 1] 6 1/n, by union bound

Abstraction: First Moment Method

E[X ] = o(1) =⇒ Pr[X = 0] = 1− o(1)
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Lower Bound

Pr[Xi = 1] >
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There exists a constant d such that for
k = k∗∗ = c log n/ log log n, we have Pr[Xi = 1] > n−1/3

E[X ] > n2/3, by linearity of expectation

Pr[X = 0] 6 Pr[|X − E[X ]| > E[x ]] 6 Var(X )

E[X ]2
=∑n

i=1 Var(Xi )+2
∑

16i<j6n Cov(Xi ,Xj )

E[X ]2
6 n+0

n4/3 6 n−1/3

We used the fact that Var(Xi ) 6 1 for indicator variables
We used the fact that Cov[Xi ,Xj ] 6 0 (Prove this)

Abstraction: Second Moment Method
Pr[X = 0] = o(1), if E[X ]→∞ and
E[XiXj ] = (1 + o(1))E[Xi ]
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