Lecture 04: Balls and Bins: Birthday Paradox \& Maximum Load

Elementary Inequalities

- $\left(1-\frac{1}{k}\right)^{k} \leqslant e^{-1}$, for $k \geqslant 1$
- $\left(1+\frac{1}{k}\right)^{k} \leqslant e$, for $k \geqslant 0$
- $\left(\frac{n}{k}\right)^{k} \leqslant\binom{ n}{k} \leqslant\left(\frac{e n}{k}\right)^{k}$, for $0 \leqslant k \leqslant n$
- $1-x \leqslant e^{-x}$, for all $x \geqslant 0$
- There exists a constant $c \in(0,1)$ such that $e^{-x-x^{2}} \leqslant 1-x$, for $x \in[0, c]$

Markov Inequality

Theorem (Markov Inequality)
 Let X be a random variable that takes non-negative values. Then $\operatorname{Pr}[X \geqslant t] \leqslant \mathbb{E}[X] / t$.

- Suppose not, then $\operatorname{Pr}[X \geqslant t]>\mathbb{E}[X] / t$
- $\mathbb{E}[X] \geqslant 0 \cdot \operatorname{Pr}[0 \leqslant X<t]+t \cdot \operatorname{Pr}[X \geqslant t]>\mathbb{E}[X]$
- Hence contradiction
- Think: Tightness

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geqslant t] \leqslant \frac{\operatorname{Var}(X)}{t^{2}}
$$

- Use Markov on $\operatorname{Pr}\left[(X-\mathbb{E}[x])^{2} \geqslant t^{2}\right]$
- Think: Tightness

Birthday Paradox

$p_{m, n}$ is the probability of encountering a collision when m balls are thrown in n bins

$$
\begin{aligned}
1-p_{m, n} & =\frac{n}{n} \cdot \frac{(n-1)}{n} \ldots \frac{(n-m+1)}{n} \\
& =\prod_{i=0}^{m-1}\left(1-\frac{i}{n}\right) \\
& \leqslant \prod_{i=0}^{m-1} \exp \left(-\frac{i}{n}\right)=\exp \left(-\frac{m(m-1)}{2 n}\right)
\end{aligned}
$$

- Use $m \sim \sqrt{2 n \ln (1 / p)}$, to achieve $p_{m, n} \geqslant(1-p)$
- Think: Tightness

Maximum Load

Theorem (Maximum Load Bound)

When n balls are thrown into n bins, the maximum load is
$\Theta\left(\frac{\log n}{\log \log n}\right)$ with high probability.

- Let X_{i} be the indicator variable for bin i getting $\geqslant k$ balls
- $\operatorname{Pr}\left[X_{i}=1\right] \leqslant\binom{ n}{k}\left(\frac{1}{n}\right)^{k} \leqslant \frac{e^{k}}{k^{k}}$
- There exists a suitable constant c such that for $k=k^{*}:=c \log n / \log \log n$, we have $\operatorname{Pr}\left[X_{i}=1\right] \leqslant 1 / n^{2}$
- Let $X:=\sum_{i=1}^{n} X_{i}$
- $\operatorname{Pr}[X \geqslant 1] \leqslant 1 / n$, by union bound

Abstraction: First Moment Method

- $\mathbb{E}[X]=o(1) \Longrightarrow \operatorname{Pr}[X=0]=1-o(1)$
- $\operatorname{Pr}\left[X_{i}=1\right] \geqslant\binom{ n}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k} \geqslant$
$\frac{e^{k}}{k^{k}}\left(1-\frac{1}{n}\right)^{n}\left(1-\frac{1}{n}\right)^{-k} \geqslant \frac{e^{k}}{4 k^{k}}$
- There exists a constant d such that for $k=k^{* *}=c \log n / \log \log n$, we have $\operatorname{Pr}\left[X_{i}=1\right] \geqslant n^{-1 / 3}$
- $\mathbb{E}[X] \geqslant n^{2 / 3}$, by linearity of expectation
- $\operatorname{Pr}[X=0] \leqslant \operatorname{Pr}[|X-\mathbb{E}[X]| \geqslant \mathbb{E}[x]] \leqslant \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^{2}}=$

$$
\frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leqslant i<j \leqslant n} \operatorname{Cov}\left(X_{i}, X_{j}\right)}{\mathbb{E}[X]^{2}} \leqslant \frac{n+0}{n^{4 / 3}} \leqslant n^{-1 / 3}
$$

- We used the fact that $\operatorname{Var}\left(X_{i}\right) \leqslant 1$ for indicator variables
- We used the fact that $\operatorname{Cov}\left[X_{i}, X_{j}\right] \leqslant 0$ (Prove this)

Abstraction: Second Moment Method

- $\operatorname{Pr}[X=0]=o(1)$, if $\mathbb{E}[X] \rightarrow \infty$ and $\mathbb{E}\left[X_{i} X_{j}\right]=(1+o(1)) \mathbb{E}\left[X_{i}\right]^{2}$

